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Example: self-force in classical electromagnetism

» Self-force arises in “classical atom”:
local EM field of orbiting charge = self-force

» Instead of local field, use “global energy balance”

rate of change of
conserved quantity

dE
— ) =—(P) <0 = orbit decays
dt ——
flux of
conserved current

» Common features w/ gravitational self-force:

> Local fields hard to work with (must be regularized),
but flux only depends on fields far away
> Average cancels out energy stored locally in field
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Motion around spinning black holes

» Unforced, geodesic motion in Kerr:
complete set of conserved quantities P,

» Linear in p,: from Killing vectors/isometries:
> E=—(8:)"pa
> L. =(9)"Pa

» Quadratic in p,: from “Killing tensors”
obeying V(, Kje) = 0:

» m2 = 7gabpapb
» “Carter constant” K = K,lbp“pb
(reduces to L? in Schwarzschild)

» Non-geodesic motion: “conserved quantities” Py (T)
(flux-balance gives you (dP, /dT))
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Previous work on flux-balance laws

Properties of Green(’s) functions® Conserved currents
> |Gal'tsov, 1982]: E & L, » [Quinn & Wald, 1999]: E & L,
(scalar, electromagnetism, & gravity) (scalar, electromagnetism, & gravity,

only scattering)

» |Grant & Moxon, 2022]:
any action variable
(scalar field, only locally)

» [Mino, 2003]: Carter constant K
(gravity)

» |[Isoyama et al, 2018|:

any action variable (gravity)
» This talk: any action variable

“No physically motivated explanation . .
prysieaty P or conserved quantity (gravity)
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Outline

I. Conserved currents

II. Hamiltonian formulation of self-force

III. Flux-balance laws



Local variational principles

» Consider theory for field ® 4, w/ equations of motion E4 =0

» Usual way of deriving these equations:

SZ/LdV
\%
\
0S=0 — FE1=0
——
for all P 4

subject to B.C.

» This throws out integral over 0V, so consider a local expression:

5(v/—gL) = /=g (E*6® 4 + V,0°{6®})
for local, linear functional 8¢
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Symplectic currents

» In terms of 8%, define symplectic current
1
v—9g

» Conserved on linearized EOM for perturbations d;®P:

w“{61<1>, (52'1)} = 51(\/—99(1{(52‘1’}) — 51 — (52

1
V=9

Vawa{élé,égé} = 51(I)A (52(\/ *gEA) *(51 — 52
—_——

V=9l 02}

» In fact, shows (LEA is self-adjoint!
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Example: scalar field

» (Real) Klein-Gordon Lagrangian:

S = ¢, E = 0o,
1

—_—
L= Qg“bmcz»)(vbgb)} {0"{&5} = ~369" V10

> Symplectic current just analogue of Klein-Gordon current:
w{816,020} = —g™(520V301¢ — 01 < b2)

» Theory is linear = d1¢ = ¢1 and d2¢p = @9 exact solutions
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Example: gravity

» Einstein-Hilbert Lagrangian:

Eab _ Gab
(pab = Yab, — “ ’ la be
I —_R 0*{og} = —26C'%. g
varied Christoffels

» Symplectic current:

1
w{d1g,029} = —2 (52C[abc519b]c + 29d6519de52C[“bc9b]C> — 01 +— 02
» Gauge-invariant up to boundary term:

w{dg, £¢g} = V,Q4Y
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Symmetry operators
> Symmetry operator DA B:

EMD.§®) =D EP{$®} — D45 maps b/w solutions
W {0

of linearized equations
» Quadratic conserved current w®{J®, D - P}

> Examples:

» For isometry/Killing vector £%, £¢ (for any field)
» For Killing tensor K,;, and Klein-Gordon field ¢,

Dk : ¢ — Vo(K*V,0) [Carter, 1977]
(others for other fields in Kerr, see, e.g., [Grant & Flanagan, 2019 & 2020])

» This talk: symmetry operator comes from Hamiltonian formulation
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Outline

II. Hamiltonian formulation of self-force



“Axioms” of first-order, gravitational self-force
1. Exact worldline y(g) geodesic in ap(€) = gap + chll + O(e?):
PE)Ve(e)i*(e) = 0%, 3*(e)3"(e)darle) = —1,

2. Full retarded field: h}lb = hfb + hfb obeys

E*{h"} =0
abrp 1l ) 7(5)
E®{h'}=0 and b
(1) E®{h%} = 8nT¢ gl
\—— (1)
off v
near -y

3. Stress-energy tensor:
V—=gT{(z) = m/dT"'y“/q'/bldaba/b/[x,’y(T')], where

a'b! / V
[ s astwaay = 30
1% 0 gV
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Self force as a Hamiltonian system

» Points on phase space: X» = (pa)

» ~(e) geodesic in ggp(e) =

H(X;e) = \/— oB(z;e)papp + O(£%)
> “Velocity” on phase space: Hamilton’s equations

() = (@ )" VH(e)

Poisson bracket

(valid even if there is no symplectic form Q4p!)

XN e

T M
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Pseudo-Hamiltonians

» Hamiltonian systems are supposed to be conservative,
but self-force isn’t—what’s going on?

» Note: Jqp itself depends on a worldline, so really

XN r ‘
HXX&‘ \/— oBz; Y (X)|paps -
“pseudo—Hamlltonlan J
where T : X — I such that TiM v
D4(e) = (@ HP[VBH(X, X;e)] 5 x J

» Becomes Hamiltonian for € = 0 (geodesic motion)
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Perturbation theory

» Quantity of interest: 6T'4, the tangent to I'(7;¢)
at constant 7, € =0

» Evolution:
£16T4 = (O )AP[VRSH (X, X)) ¢ x 0TS

> Given a Y4, obeying £F,TA/A =0,
can define an average rate of change of §T4:

lim
AT—00 AT

- YA, 6TA — YA, 6TA
A\ _ A A
<5F >:
= @) (TP [V d (X X))
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Hamilton propagator
» For fixed 7, 7/, consider

Y(7,7") F\(’T-)/HI;(Q

X X'
. T4 v X’

» Pushforward T4 4 relates vectors at X & X',

defined by
Vaf 0] = T4 Y f(X) *

A A VA X'="(X)

» Also obeys
% vA A X

» In coordinates:

;o 0XR(7)
TNJ(T,T) = m
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In (action angle) coordinates

» Geodesic motion in Kerr is integrable:
can find independent conserved quantities P,
. . o o e
» Can write coordinates X = ((} ) such that
» J, are conserved
» ¢ is non-compact, ¢',. .., ¢> periodic in 27 4 bl
o ial. (O—1\AB _ (A B] BT TR 0
» ¢“, J, canonical: (2717 = 2(04)*(0s,)

» Hamilton propagator: in terms of frequencies v, T

o7 \_»_—y
s (17— 7)o i
TS(7,7) = < OB 55 975

Surface of constant J,,

[similar result holds if using X® = (}1;;),
but now no longer canonicall|

15 /23



Outline

III. Flux-balance laws



Integration regions

» B(r, AT): approaches horizon (.7)
and null infinity (%)

» W(r, AT;r): surface of proper distance r
(near v so that this & hf;)’s well-defined)

1
» Note: computing averages lim — /
Ar—oo AT ..

—> endcap contributions vanish!
(“conserved quantity stored in field”)

T—AT/2

B(r,AT)
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A new symmetry operator

» Fields which we consider are functions of I':

I'(r) = Tlab = htlzb’hgbvhaRb

» For fixed 7, I is a function of its initial data X at 7
(through map T)

» New symmetry operator: V4 (varies X at fixed 7)

» Note: only works on the fields in this problem!




A local flux-balance law

» Using linearized EOM: g T+ AT/2

Vaw® {h% V Ah5} = 87hB, v a1

» Lengthy calculation + Stokes’ theorem — W(r, Ari1)
. Q_l)AB /
o) == i (/ (R, ¥ phS}dS,
< Aq—lgloo 167w AT W(r,ATir) “ { VB } “

> hfés defined locally = works only on W(7, At;7)! - Ar/2
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A local-to-global approach

Start with e
Falb'] = Arsoe AT /B(T,AT) R,V ah T}y o §or A
1. In region b/w B(1, A7) and W(T, AT;7),
Vaw”{h!',Vh'} =0
= Jstran = Jwianm
2. Decompose h' at W(r, AT;r); by bilinearity, gives e

> h' V,h": exactly conserved, give nothing

> hE v Ah%: see previous slide, gives local flux-balance
> ho ., Vah™: not ezactly the same as previous slide. . .

> h¥ Vb7 naively diverges 5(r,An)
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Asymmetry of conserved current
3. w¥{h,Vh} not symmetric under h +— h, but:

> From Vyw® {h®, VahT} = —8xT¢'Y'V 4hE,,, can show

—1\AB
i )77

9 {h%, Vphf}ds,
Ar—oo  STAT /W(TA,AT;T‘)W { B } N

= 2(9*)*‘3(?3/3@ SH(X', X ) ,xr) "

previously V g/
> Synge’s rule:

Valf(X, Xxrox = [Vaf (X, X)]xox + [Va f(X, X )]x o x

I

(%) = =2 (60) + 227 (TF gV [SH (X, X’)bqu'>7,
N

what we want vanishes off resonance [Isoyama et al., 2018]?
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Resolving the “divergent” piece

4. Can show divergent piece vanishes by parity argument

» Form of hasb near worldline:
h® ~m/r

» Integrand contains odd # of n,’s (= V,r), and /dQ n...n®hFt =

Final, simple flux-balance law:

(5104) = ()P Fl]
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Explicit result in coordinates

» For J,, result simplifies as ¢“, J, canonical:

<5J> 3; (Do) A F a[R]

» Compute h}lb asymptotically and differentiate w.r.t. ¢*:
1 1 Oh!
0Ja) = lim —— hl, Ay
< Jo) = 33 |:A1}Lnoo Au/M { e }

1
+ lim 1/ {hl Oh }dE ]
Av—oo Av Aj?” 6q

(qualitatively reproduces results of [[soyama et al., 2018])
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Conclusions and future work

» In this talk: flux-balance laws for the action variables
= evolution for all conserved quantities in Kerr

» Note: calculation doesn’t assume these variables!

> Extends results of [Grant & Moxon, 2022]
(for scalar fields)

> “Explains” results of [Isoyama et al., 2018]
(Carter constant as coordinate = [Mino, 2003]7)

» Future work:

» Practicality: flux in terms of curvature variables
(language of [Isoyama et al., 2018])

> Second order! (currently sorting out E & L)

» Poisson bracket can be degenerate —> add spin?
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