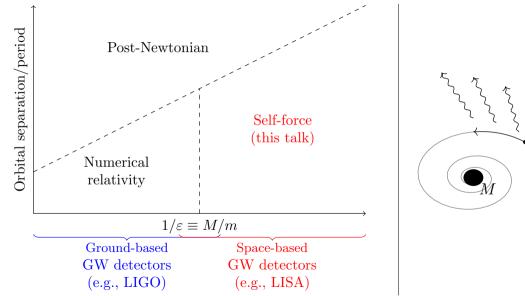
Flux-balance laws from the Hamiltonian formulation of self-force

Alexander Grant

University of Southampton

DCU CfAR Seminar March 26th, 2024

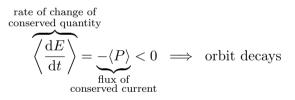
Motivation: the gravitational two-body problem



m

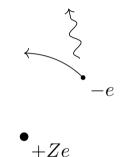
Example: self-force in classical electromagnetism

- Self-force arises in "classical atom": local EM field of orbiting charge ⇒ self-force
- ▶ Instead of local field, use "global energy balance":



► Common features w/ gravitational self-force:

- Local fields hard to work with (must be regularized), but flux *only* depends on fields far away
- Average cancels out energy stored locally in field



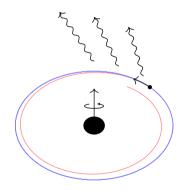
Motion around spinning black holes

- Unforced, geodesic motion in Kerr: *complete set* of conserved quantities P_{α}
 - Linear in p_a : from Killing vectors/isometries:

$$E \equiv -(\partial_t)^a p_a$$

$$L_z \equiv (\partial_\phi)^a p_a$$

- Quadratic in p_a : from "Killing tensors" obeying $\nabla_{(a}K_{bc)} = 0$:
 - $\blacktriangleright m^2 \equiv -g_{ab}p^a p^b$
 - "Carter constant" $K \equiv K_{ab}p^a p^b$ (reduces to L^2 in Schwarzschild)
- ► Non-geodesic motion: "conserved quantities" $P_{\alpha}(\tau)$ (flux-balance gives you $\langle dP_{\alpha}/d\tau \rangle$)



Previous work on flux-balance laws

Properties of Green('s) functions^a

- $\blacktriangleright \text{ [Gal'tsov, 1982]: } E \& L_z \\ \text{(scalar, electromagnetism, \& gravity)}$
- [Mino, 2003]: Carter constant K (gravity)
- [Isoyama et al, 2018]: any action variable (gravity)

 a No physically motivated explanation

Conserved currents

- $\blacktriangleright [Quinn \& Wald, 1999]: E \& L_z (scalar, electromagnetism, \& gravity, only scattering)$
- [Grant & Moxon, 2022]: any action variable (scalar field, only locally)
- This talk: any action variable or conserved quantity (gravity)

Outline

I. Conserved currents

II. Hamiltonian formulation of self-force

III. Flux-balance laws

Local variational principles

▶ Consider theory for field Φ_A , w/ equations of motion $E^A = 0$

▶ Usual way of deriving these equations:

$$\begin{split} S = \int_{V} L \, \mathrm{d}V \\ & \Downarrow \\ \underbrace{\delta S = 0}_{\text{for all } \delta \Phi_{A}} \iff E^{A} = 0 \\ & \text{subject to B.C.} \end{split}$$

▶ This throws out integral over ∂V , so consider a *local* expression:

$$\delta(\sqrt{-g}L) = \sqrt{-g} \left(E^A \delta \Phi_A + \nabla_a \theta^a \{ \delta \Phi \} \right)$$

for local, linear functional θ^a

Symplectic currents

▶ In terms of θ^a , define symplectic current

$$\omega^a \{ \delta_1 \mathbf{\Phi}, \delta_2 \mathbf{\Phi} \} \equiv \frac{1}{\sqrt{-g}} \delta_1(\sqrt{-g} \theta^a \{ \delta_2 \mathbf{\Phi} \}) - \delta_1 \longleftrightarrow \delta_2$$

• Conserved on *linearized* EOM for perturbations $\delta_i \Phi$:

$$\nabla_a \omega^a \{ \delta_1 \mathbf{\Phi}, \delta_2 \mathbf{\Phi} \} = \frac{1}{\sqrt{-g}} \delta_1 \Phi_A \underbrace{\delta_2(\sqrt{-g} E^A)}_{\sqrt{-g} \underbrace{E^A}_{(1)} \{ \delta_2 \mathbf{\Phi} \}} - \delta_1 \longleftrightarrow \delta_2$$

▶ In fact, shows $E^A_{(1)}$ is self-adjoint!

Example: scalar field

▶ (Real) Klein-Gordon Lagrangian:

$$\begin{aligned} \Phi &= \phi, \\ L &= -\frac{1}{2} g^{ab} (\nabla_a \phi) (\nabla_b \phi) \end{aligned} \implies \begin{cases} E &= \Box \phi, \\ \theta^a \{ \delta \phi \} &= -\delta \phi \, g^{ab} \nabla_b \phi \end{aligned}$$

Symplectic current just analogue of Klein-Gordon current:

$$\omega^a \{ \delta_1 \phi, \delta_2 \phi \} = -g^{ab} (\delta_2 \phi \nabla_b \delta_1 \phi - \delta_1 \longleftrightarrow \delta_2)$$

▶ Theory is *linear* $\implies \delta_1 \phi \equiv \phi_1$ and $\delta_2 \phi \equiv \phi_2$ exact solutions

Example: gravity

▶ Einstein-Hilbert Lagrangian:

$$\begin{aligned} \Phi_{ab} &= g_{ab}, \\ L &= -R \end{aligned} \implies \begin{cases} E^{ab} &= G^{ab}, \\ \theta^a \{ \delta \boldsymbol{g} \} &= -2 \underbrace{\delta C^{[a}{}_{bc}}_{\text{varied Christoffels}} g^{b]c} \end{aligned}$$

► Symplectic current:

$$\omega^a \{ \delta_1 \boldsymbol{g}, \delta_2 \boldsymbol{g} \} = -2 \left(\delta_2 C^{[a}{}_{bc} \delta_1 g^{b]c} + \frac{1}{2} g^{de} \delta_1 g_{de} \delta_2 C^{[a}{}_{bc} g^{b]c} \right) - \delta_1 \longleftrightarrow \delta_2$$

• Gauge-invariant up to boundary term:

$$\omega^a \{ \delta \boldsymbol{g}, \pounds_{\boldsymbol{\xi}} \boldsymbol{g} \} = \nabla_b Q^{[ab]}$$

Symmetry operators

Symmetry operator $\mathcal{D}^{A}{}_{B}$:

$$E^{A}_{\scriptscriptstyle (1)} \{ \boldsymbol{\mathcal{D}} \cdot \delta \boldsymbol{\Phi} \} = \widetilde{\mathcal{D}}^{A}{}_{B} E^{B}_{\scriptscriptstyle (1)} \{ \delta \boldsymbol{\Phi} \} =$$

 $\mathcal{D}^{A}{}_{B}$ maps b/w solutions of linearized equations

• Quadratic conserved current $\omega^a \{ \delta \Phi, \mathcal{D} \cdot \delta \Phi \}$

► Examples:

- For isometry/Killing vector ξ^a , \pounds_{ξ} (for any field)
- For Killing tensor K_{ab} and Klein-Gordon field ϕ ,

$$\mathcal{D}_K : \phi \mapsto \nabla_a(K^{ab} \nabla_b \phi) \qquad [Carter, 1977]$$

(others for other fields in Kerr, see, e.g., [Grant & Flanagan, 2019 & 2020])

▶ This talk: symmetry operator comes from Hamiltonian formulation

Outline

I. Conserved currents

II. Hamiltonian formulation of self-force

III. Flux-balance laws

"Axioms" of first-order, gravitational self-force

1. Exact worldline $\gamma(\varepsilon)$ geodesic in $\breve{g}_{ab}(\varepsilon) = g_{ab} + \varepsilon h_{ab}^R + O(\varepsilon^2)$:

$$\dot{\gamma}^{b}(\varepsilon)\breve{\nabla}_{b}(\varepsilon)\dot{\gamma}^{a}(\varepsilon) = O(\varepsilon^{3}), \qquad \dot{\gamma}^{a}(\varepsilon)\dot{\gamma}^{b}(\varepsilon)\breve{g}_{ab}(\varepsilon) = -1,$$

2. Full retarded field: $h_{ab}^1 = h_{ab}^R + h_{ab}^S$ obeys

$$\underbrace{E_{(1)}^{ab}\{\boldsymbol{h}^{1}\}=0}_{\text{off }\gamma} \quad \text{and} \quad \underbrace{E_{(1)}^{ab}\{\boldsymbol{h}^{R}\}=0}_{(1)}$$
$$\underbrace{E_{(1)}^{ab}\{\boldsymbol{h}^{S}\}=8\pi T_{1}^{ab}}_{\text{near }\gamma}$$

3. Stress-energy tensor:

$$\sqrt{-g}T_1^{ab}(x) = m \int d\tau' \dot{\gamma}^{a'} \dot{\gamma}^{b'} \delta^{ab}{}_{a'b'}[x, \gamma(\tau')], \text{ where}$$
$$\int_V f_{ab} \delta^{ab}{}_{a'b'}(x, x') dV = \begin{cases} f_{a'b'} & x' \in V\\ 0 & x' \notin V \end{cases}$$

 $\gamma(\varepsilon)$

Self force as a Hamiltonian system

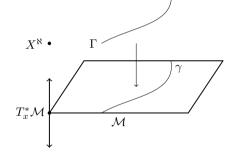
- Points on phase space: $X^{\aleph} = \begin{pmatrix} x^{\alpha} \\ p_{\alpha} \end{pmatrix}$
- $\blacktriangleright \ \gamma(\varepsilon) \text{ geodesic in } \breve{g}_{ab}(\varepsilon) \implies$

$$H(X;\varepsilon) = -\sqrt{-\breve{g}^{\alpha\beta}(x;\varepsilon)p_{\alpha}p_{\beta}} + O(\varepsilon^3)$$

"Velocity" on phase space: Hamilton's equations

$$\dot{\Gamma}^{A}(\varepsilon) = \underbrace{(\Omega^{-1})^{AB}}_{\text{Poisson bracket}} \nabla_{B} H(\varepsilon)$$

(valid even if there is no symplectic form Ω_{AB} !)



Pseudo-Hamiltonians

- ► Hamiltonian systems are supposed to be conservative, but self-force isn't—what's going on?
- ▶ Note: \breve{g}_{ab} itself depends on a worldline, so really

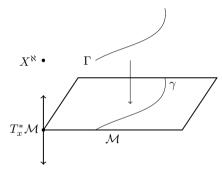
$$\underbrace{H(X,\bar{X};\varepsilon)}_{}=-\sqrt{-\breve{g}^{\alpha\beta}[x;\Upsilon(\bar{X})]p_{\alpha}p_{\beta}}$$

"pseudo-Hamiltonian"

where $\Upsilon : X \mapsto \Gamma$ such that

$$\dot{\Gamma}^A(\varepsilon) = (\Omega^{-1})^{AB} [\nabla_B H(X, \bar{X}; \varepsilon)]_{\bar{X} \to X}$$

• Becomes Hamiltonian for $\varepsilon = 0$ (geodesic motion)



Perturbation theory

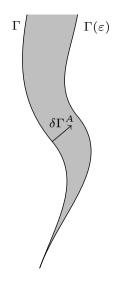
• Quantity of interest: $\delta \Gamma^A$, the tangent to $\Gamma(\tau; \varepsilon)$ at constant τ , $\varepsilon = 0$

► Evolution:

$$\pounds_{\dot{\Gamma}} \delta \Gamma^A = (\Omega^{-1})^{AB} [\nabla_B \delta H(X, \bar{X})]_{\bar{X} \to X}$$

• Given a $\Upsilon^{A'}{}_A$ obeying $\pounds_{\dot{\Gamma}'} \Upsilon^{A'}{}_A = 0$, can define an average rate of change of $\delta \Gamma^A$:

$$\begin{split} \left\langle \delta \dot{\Gamma}^{A} \right\rangle &\equiv \lim_{\Delta \tau \to \infty} \frac{\Upsilon^{A}{}_{A^{\prime\prime}} \delta \Gamma^{A^{\prime\prime}} - \Upsilon^{A}{}_{A^{\prime}} \delta \Gamma^{A^{\prime}}}{\Delta \tau} \\ &= (\Omega^{-1})^{AB} \left\langle \Upsilon^{B^{\prime}}{}_{B} \left[\nabla_{B^{\prime}} \delta H(X^{\prime}, \bar{X}^{\prime}) \right]_{\bar{X}^{\prime} \to X^{\prime}} \right\rangle_{\tau^{\prime}} \end{split}$$



Hamilton propagator

▶ For fixed τ , τ' , consider

$$\Upsilon(\tau,\tau'):\underbrace{\Gamma(\tau)}_{X}\mapsto\underbrace{\Gamma(\tau')}_{X'}$$

► Pushforward $\Upsilon^{A'}{}_A$ relates vectors at X & X', defined by

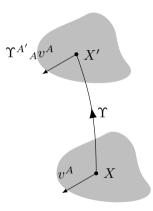
$$\nabla_A f[\Upsilon(X)] \equiv \Upsilon^{A'}{}_A \nabla_{A'} f(X') \big|_{X'=\Upsilon(X)}$$

► Also obeys

$$\pounds_{\dot{\Gamma}'}\Upsilon^{A'}{}_A = 0$$

▶ In coordinates:

$$\Upsilon^{\aleph} \Box(\tau',\tau) = \frac{\partial X^{\aleph}(\tau')}{\partial X^{\beth}(\tau)}$$

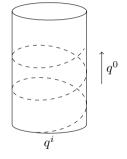


In (action angle) coordinates

- Geodesic motion in Kerr is *integrable*: can find independent conserved quantities P_α
- Can write coordinates X^ℵ = (^{q^α}_{J_α}) such that
 J_α are conserved
 q⁰ is non-compact, q¹,...,q³ periodic in 2π
 - q^{α}, J_{α} canonical: $(\Omega^{-1})^{AB} = 2(\partial_{q^{\alpha}})^{[A}(\partial_{J_{\alpha}})^{B]}$

▶ Hamilton propagator: in terms of frequencies ν^{α} ,

$$\Upsilon^{\aleph} \mathbf{j}(\tau', \tau) = \begin{pmatrix} \delta^{\alpha}{}_{\beta} & (\tau' - \tau) \frac{\partial \nu^{\alpha}}{\partial J_{\beta}} \\ 0 & \delta^{\beta}{}_{\alpha} \end{pmatrix}$$



Surface of constant J_{α}

[similar result holds if using $X^{\aleph} = \begin{pmatrix} q^{\alpha} \\ P_{\alpha} \end{pmatrix}$, but now no longer canonical!]

Outline

I. Conserved currents

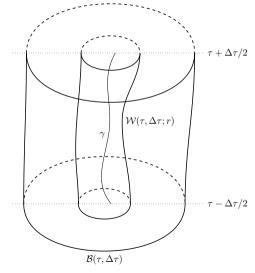
II. Hamiltonian formulation of self-force

III. Flux-balance laws

Integration regions

- $\blacktriangleright \ \mathcal{B}(\tau, \Delta \tau): \text{ approaches horizon } (\mathscr{H}) \\ \text{ and null infinity } (\mathscr{I})$
- $\blacktriangleright \mathcal{W}(\tau, \Delta \tau; r): \text{ surface of proper distance } r$ (near γ so that this & $h_{ab}^{R,S}$ well-defined)
- Note: computing averages $\lim_{\Delta \tau \to \infty} \frac{1}{\Delta \tau} \int_{\dots}$

 \implies endcap contributions vanish! ("conserved quantity stored in field")

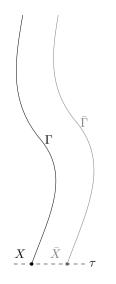


A new symmetry operator

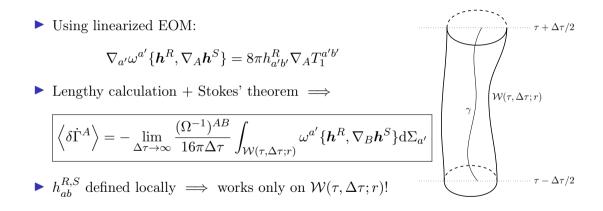
• Fields which we consider are functions of Γ :

$$\Gamma(\tau) \implies T_1^{ab} \implies h_{ab}^1, h_{ab}^S, h_{ab}^R$$

- For fixed τ, Γ is a function of its initial data X at τ (through map Υ)
- New symmetry operator: ∇_A (varies X at fixed τ)
- ▶ Note: *only* works on the fields in this problem!



A local flux-balance law



A local-to-global approach

Start with

$$\mathcal{F}_{A}[oldsymbol{h}^{1}]\equiv \lim_{\Delta au o\infty}rac{1}{\Delta au}\int_{\mathcal{B}(au,\Delta au)}\omega^{a'}\{oldsymbol{h}^{1},
abla_{A}oldsymbol{h}^{1}\}\mathrm{d}\Sigma_{a'}$$

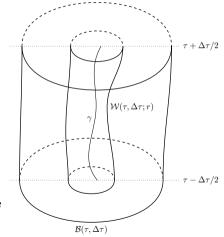
1. In region b/w $\mathcal{B}(\tau, \Delta \tau)$ and $\mathcal{W}(\tau, \Delta \tau; r)$,

$$abla_{a'}\omega^{a'}\{\boldsymbol{h}^1,
abla_A \boldsymbol{h}^1\} = 0$$

$$\implies \int_{\mathcal{B}(\tau,\Delta\tau)} = \int_{\mathcal{W}(\tau,\Delta\tau;r)}$$

2. Decompose h^1 at $\mathcal{W}(\tau, \Delta \tau; r)$; by bilinearity, gives

h^R, ∇_Ah^R: exactly conserved, give nothing
h^R, ∇_Ah^S: see previous slide, gives *local* flux-balance
h^S, ∇_Ah^R: not *exactly* the same as previous slide...
h^S, ∇_Ah^S: naïvely diverges



Asymmetry of conserved current

3. $\omega^{a'} \{ \boldsymbol{h}, \nabla_A \tilde{\boldsymbol{h}} \}$ not symmetric under $\boldsymbol{h} \longleftrightarrow \tilde{\boldsymbol{h}}$, but:

From $\nabla_{a'} \boldsymbol{\omega}^{a'} \{ \boldsymbol{h}^S, \nabla_A \boldsymbol{h}^R \} = -8\pi T_1^{a'b'} \nabla_A h_{a'b'}^R$, can show

$$\lim_{\Delta \tau \to \infty} \frac{(\Omega^{-1})^{AB}}{8\pi \Delta \tau} \int_{\mathcal{W}(\tau, \Delta \tau; r)} \omega^{a'} \{ \boldsymbol{h}^{S}, \nabla_{B} \boldsymbol{h}^{R} \} d\Sigma_{a'}$$

$$= 2(\Omega^{-1})^{AB} \Big\langle \Upsilon^{B'}{}_{B} [\underbrace{\nabla_{\bar{B}'}}_{\text{previously } \nabla_{B'}} \delta H(X', \bar{X}')]_{\bar{X}' \to X'} \Big\rangle_{\tau'}$$

$$(*)$$

Synge's rule:

$$\nabla_{A}[f(X,X')]_{X'\to X} = [\nabla_{A}f(X,X')]_{X'\to X} + [\nabla_{A'}f(X,X')]_{X'\to X}$$

$$\Downarrow$$

$$(^{*}) = \underbrace{-2\left\langle\delta\dot{\Gamma}^{A}\right\rangle}_{\text{what we want}} + \underbrace{2(\Omega^{-1})^{AB}\left\langle\Upsilon^{B'}{}_{B}\nabla_{B'}[\delta H(X',\bar{X}')]_{\bar{X}'\to X'}\right\rangle_{\tau'}}_{\text{vanishes off resonance [Isoyama et al., 2018]?}}$$

Resolving the "divergent" piece

4. Can show divergent piece vanishes by parity argument

Form of h_{ab}^S near worldline:

$$h^{S} \sim m/r$$

• Integrand contains odd # of n_{a} 's ($\equiv \nabla_{a}r$), and $\int d\Omega \ n^{a_{1}} \cdots n^{a_{2k+1}} = 0$

Final, simple flux-balance law:

$$\left\langle \delta \dot{\Gamma}^A
ight
angle = -rac{1}{32\pi} (\Omega^{-1})^{AB} \mathcal{F}_B[\boldsymbol{h}^1]$$

Explicit result in coordinates

▶ For J_{α} , result simplifies as q^{α}, J_{α} canonical:

$$\left\langle \delta \dot{J}_{\alpha} \right\rangle = rac{1}{32\pi} (\partial_{q^{lpha}})^A \mathcal{F}_A[\boldsymbol{h}^1]$$

• Compute h_{ab}^1 asymptotically and differentiate w.r.t. q^{α} :

$$\left\langle \delta \dot{J}_{\alpha} \right\rangle = \frac{1}{32\pi} \left[\lim_{\Delta u \to \infty} \frac{1}{\Delta u} \int_{\Delta \mathscr{I}} \omega^{a'} \left\{ \mathbf{h}^{1}, \frac{\partial \mathbf{h}^{1}}{\partial q^{\alpha}} \right\} d\Sigma_{a'} \right. \\ \left. + \lim_{\Delta v \to \infty} \frac{1}{\Delta v} \int_{\Delta \mathscr{H}} \omega^{a'} \left\{ \mathbf{h}^{1}, \frac{\partial \mathbf{h}^{1}}{\partial q^{\alpha}} \right\} d\Sigma_{a'}$$

(qualitatively reproduces results of [Isoyama et al., 2018])

Conclusions and future work

- In this talk: flux-balance laws for the action variables
 ⇒ evolution for all conserved quantities in Kerr
 - ▶ Note: calculation doesn't assume these variables!
 - Extends results of [Grant & Moxon, 2022] (for scalar fields)
 - "Explains" results of [Isoyama et al., 2018] (Carter constant as coordinate => [Mino, 2003]?)

► Future work:

- Practicality: flux in terms of curvature variables (language of [Isoyama et al., 2018])
- Second order! (currently sorting out $E \& L_z$)
- ▶ Poisson bracket can be degenerate \implies add spin?

