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Example: self-force in classical electromagnetism

▶ Self-force arises in “classical atom”:
local EM field of orbiting charge =⇒ self-force

▶ Instead of local field, use “global energy balance”:

rate of change of
conserved quantity︷ ︸︸ ︷〈

dE

dt

〉
= −⟨P ⟩︸ ︷︷ ︸

flux of
conserved current

< 0 =⇒ orbit decays

▶ Common features w/ gravitational self-force:
▶ Local fields hard to work with (must be regularized),

but flux only depends on fields far away
▶ Average cancels out energy stored locally in field

+Ze

−e
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Motion around spinning black holes

▶ Unforced, geodesic motion in Kerr:
complete set of conserved quantities Pα

▶ Linear in pa: from Killing vectors/isometries:
▶ E ≡ −(∂t)

apa
▶ Lz ≡ (∂ϕ)

apa

▶ Quadratic in pa: from “Killing tensors”
obeying ∇(aKbc) = 0:

▶ m2 ≡ −gabp
apb

▶ “Carter constant” K ≡ Kabp
apb

(reduces to L2 in Schwarzschild)

▶ Non-geodesic motion: “conserved quantities” Pα(τ)
(flux-balance gives you ⟨dPα/dτ⟩)
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Previous work on flux-balance laws

Properties of Green(’s) functionsa

▶ [Gal’tsov, 1982]: E & Lz

(scalar, electromagnetism, & gravity)

▶ [Mino, 2003]: Carter constant K
(gravity)

▶ [Isoyama et al, 2018]:
any action variable (gravity)

aNo physically motivated explanation

Conserved currents

▶ [Quinn & Wald, 1999]: E & Lz

(scalar, electromagnetism, & gravity,
only scattering)

▶ [Grant & Moxon, 2022]:
any action variable
(scalar field, only locally)

▶ This talk: any action variable
or conserved quantity (gravity)

4 / 23



Outline

I. Conserved currents

II. Hamiltonian formulation of self-force

III. Flux-balance laws



Local variational principles

▶ Consider theory for field ΦA, w/ equations of motion EA = 0

▶ Usual way of deriving these equations:

S =

∫
V
L dV

⇓
δS = 0︸ ︷︷ ︸

for all δΦA
subject to B.C.

⇐⇒ EA = 0

▶ This throws out integral over ∂V , so consider a local expression:

δ(
√−gL) = √−g

(
EAδΦA +∇aθ

a{δΦ}
)

for local, linear functional θa
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Symplectic currents

▶ In terms of θa, define symplectic current

ωa{δ1Φ, δ2Φ} ≡
1√−g δ1(

√−gθa{δ2Φ})− δ1 ←→ δ2

▶ Conserved on linearized EOM for perturbations δiΦ:

∇aω
a{δ1Φ, δ2Φ} =

1√−g δ1ΦA δ2(
√−gEA)︸ ︷︷ ︸√

−g E
(1)

A{δ2Φ}

− δ1 ←→ δ2

▶ In fact, shows E
(1)

A is self-adjoint!
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Example: scalar field

▶ (Real) Klein-Gordon Lagrangian:

Φ = ϕ,

L = −1

2
gab(∇aϕ)(∇bϕ)

 =⇒
{

E = □ϕ,

θa{δϕ} = −δϕ gab∇bϕ

▶ Symplectic current just analogue of Klein-Gordon current:

ωa{δ1ϕ, δ2ϕ} = −gab(δ2ϕ∇bδ1ϕ− δ1 ←→ δ2)

▶ Theory is linear =⇒ δ1ϕ ≡ ϕ1 and δ2ϕ ≡ ϕ2 exact solutions
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Example: gravity

▶ Einstein-Hilbert Lagrangian:

Φab = gab,

L = −R

}
=⇒


Eab = Gab,

θa{δg} = −2 δC [a
bc︸ ︷︷ ︸

varied Christoffels

gb]c

▶ Symplectic current:

ωa{δ1g, δ2g} = −2
(
δ2C

[a
bcδ1g

b]c +
1

2
gdeδ1gdeδ2C

[a
bcg

b]c

)
− δ1 ←→ δ2

▶ Gauge-invariant up to boundary term:

ωa{δg,£ξg} = ∇bQ
[ab]
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Symmetry operators

▶ Symmetry operator DA
B:

E
(1)

A{D · δΦ} = D̃A
BE

(1)

B{δΦ} =⇒ DA
B maps b/w solutions

of linearized equations

▶ Quadratic conserved current ωa{δΦ,D · δΦ}

▶ Examples:
▶ For isometry/Killing vector ξa, £ξ (for any field)
▶ For Killing tensor Kab and Klein-Gordon field ϕ,

DK : ϕ 7→ ∇a(K
ab∇bϕ) [Carter, 1977]

(others for other fields in Kerr, see, e.g., [Grant & Flanagan, 2019 & 2020])

▶ This talk: symmetry operator comes from Hamiltonian formulation
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“Axioms” of first-order, gravitational self-force
1. Exact worldline γ(ε) geodesic in ğab(ε) = gab + εhRab +O(ε2):

γ̇b(ε)∇̆b(ε)γ̇
a(ε) = O(ε3), γ̇a(ε)γ̇b(ε)ğab(ε) = −1,

2. Full retarded field: h1ab = hRab + hSab obeys

E
(1)

ab{h1} = 0︸ ︷︷ ︸
off γ

and
E
(1)

ab{hR} = 0

E
(1)

ab{hS} = 8πT ab
1︸ ︷︷ ︸

near γ
3. Stress-energy tensor:

√−gT ab
1 (x) = m

∫
dτ ′γ̇a

′
γ̇b

′
δaba′b′ [x, γ(τ

′)], where∫
V
fabδ

ab
a′b′(x, x

′)dV =

{
fa′b′ x′ ∈ V

0 x′ ̸∈ V

γ

γ(ε)
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Self force as a Hamiltonian system

▶ Points on phase space: Xℵ =
(
xα

pα

)
▶ γ(ε) geodesic in ğab(ε) =⇒

H(X; ε) = −
√
−ğαβ(x; ε)pαpβ +O(ε3)

▶ “Velocity” on phase space: Hamilton’s equations

Γ̇A(ε) = (Ω−1)AB︸ ︷︷ ︸
Poisson bracket

∇BH(ε)

(valid even if there is no symplectic form ΩAB!)

M

γ

Γ

T ∗
xM

Xℵ
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Pseudo-Hamiltonians

▶ Hamiltonian systems are supposed to be conservative,
but self-force isn’t—what’s going on?

▶ Note: ğab itself depends on a worldline, so really

H(X, X̄; ε)︸ ︷︷ ︸
“pseudo-Hamiltonian”

= −
√
−ğαβ[x; Υ(X̄)]pαpβ

where Υ : X 7→ Γ such that

Γ̇A(ε) = (Ω−1)AB[∇BH(X, X̄; ε)]X̄→X

▶ Becomes Hamiltonian for ε = 0 (geodesic motion)

M

γ

Γ

T ∗
xM

Xℵ
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Perturbation theory

▶ Quantity of interest: δΓA, the tangent to Γ(τ ; ε)
at constant τ , ε = 0

▶ Evolution:

£Γ̇δΓ
A = (Ω−1)AB[∇BδH(X, X̄)]X̄→X

▶ Given a ΥA′
A obeying £Γ̇′ΥA′

A = 0,
can define an average rate of change of δΓA:〈
δΓ̇A

〉
≡ lim

∆τ→∞

ΥA
A′′δΓA′′ −ΥA

A′δΓA′

∆τ

= (Ω−1)AB
〈
ΥB′

B

[
∇B′δH(X ′, X̄ ′)

]
X̄′→X′

〉
τ ′

Γ Γ(ε)

δΓA

13 / 23



Hamilton propagator
▶ For fixed τ , τ ′, consider

Υ(τ, τ ′) : Γ(τ)︸︷︷︸
X

7→ Γ(τ ′)︸ ︷︷ ︸
X′

▶ Pushforward ΥA′
A relates vectors at X & X ′,

defined by

∇Af [Υ(X)] ≡ ΥA′
A ∇A′f(X ′)

∣∣
X′=Υ(X)

▶ Also obeys
£Γ̇′Υ

A′
A = 0

▶ In coordinates:

Υℵ
ℶ(τ

′, τ) =
∂Xℵ(τ ′)

∂Xℶ(τ)

XvA

X ′ΥA′
Av

A

Υ
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In (action angle) coordinates

▶ Geodesic motion in Kerr is integrable:
can find independent conserved quantities Pα

▶ Can write coordinates Xℵ =
(
qα

Jα

)
such that

▶ Jα are conserved
▶ q0 is non-compact, q1, . . . , q3 periodic in 2π
▶ qα, Jα canonical: (Ω−1)AB = 2(∂qα)

[A(∂Jα
)B]

▶ Hamilton propagator: in terms of frequencies να,

Υℵ
ℶ(τ

′, τ) =

(
δαβ (τ ′ − τ)∂ν

α

∂Jβ

0 δβα

)

[similar result holds if using Xℵ =
(
qα

Pα

)
,

but now no longer canonical!]

q0

qi

Surface of constant Jα
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Integration regions

▶ B(τ,∆τ): approaches horizon (H )
and null infinity (I )

▶ W(τ,∆τ ; r): surface of proper distance r
(near γ so that this & hR,S

ab well-defined)

▶ Note: computing averages lim
∆τ→∞

1

∆τ

∫
···

=⇒ endcap contributions vanish!
(“conserved quantity stored in field”)

W(τ,∆τ ; r)

γ

B(τ,∆τ)

τ −∆τ/2

τ +∆τ/2
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A new symmetry operator

▶ Fields which we consider are functions of Γ:

Γ(τ) =⇒ T ab
1 =⇒ h1ab, h

S
ab, h

R
ab

▶ For fixed τ , Γ is a function of its initial data X at τ
(through map Υ)

▶ New symmetry operator: ∇A (varies X at fixed τ)

▶ Note: only works on the fields in this problem!
X

Γ

X̄

Γ̄

τ
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A local flux-balance law

▶ Using linearized EOM:

∇a′ω
a′{hR,∇Ah

S} = 8πhRa′b′∇AT
a′b′
1

▶ Lengthy calculation + Stokes’ theorem =⇒

〈
δΓ̇A

〉
= − lim

∆τ→∞

(Ω−1)AB

16π∆τ

∫
W(τ,∆τ ;r)

ωa′{hR,∇Bh
S}dΣa′

▶ hR,S
ab defined locally =⇒ works only on W(τ,∆τ ; r)!

W(τ,∆τ ; r)

γ

τ −∆τ/2

τ +∆τ/2
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A local-to-global approach

Start with

FA[h
1] ≡ lim

∆τ→∞

1

∆τ

∫
B(τ,∆τ)

ωa′{h1,∇Ah
1}dΣa′

1. In region b/w B(τ,∆τ) and W(τ,∆τ ; r),

∇a′ω
a′{h1,∇Ah

1} = 0

=⇒
∫
B(τ,∆τ) =

∫
W(τ,∆τ ;r)

2. Decompose h1 at W(τ,∆τ ; r); by bilinearity, gives
▶ hR, ∇Ah

R: exactly conserved, give nothing
▶ hR, ∇Ah

S : see previous slide, gives local flux-balance
▶ hS , ∇Ah

R: not exactly the same as previous slide. . .
▶ hS , ∇Ah

S : naïvely diverges

W(τ,∆τ ; r)

γ

B(τ,∆τ)

τ −∆τ/2

τ +∆τ/2
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Asymmetry of conserved current
3. ωa′{h,∇Ah̃} not symmetric under h←→ h̃, but:

▶ From ∇a′ωa′{hS ,∇Ah
R} = −8πT a′b′

1 ∇Ah
R
a′b′ , can show

lim
∆τ→∞

(Ω−1)AB

8π∆τ

∫
W(τ,∆τ ;r)

ωa′{hS ,∇Bh
R}dΣa′

= 2(Ω−1)AB
〈
ΥB′

B [∇B̄′︸︷︷︸
previously ∇B′

δH(X ′, X̄ ′)]X̄′→X′

〉
τ ′

(*)

▶ Synge’s rule:

∇A[f(X,X ′)]X′→X = [∇Af(X,X ′)]X′→X + [∇A′f(X,X ′)]X′→Xww�
(*) = −2

〈
δΓ̇A

〉
︸ ︷︷ ︸
what we want

+2(Ω−1)AB
〈
ΥB′

B∇B′ [δH(X ′, X̄ ′)]X̄′→X′

〉
τ ′︸ ︷︷ ︸

vanishes off resonance [Isoyama et al., 2018]?

20 / 23



Resolving the “divergent” piece

4. Can show divergent piece vanishes by parity argument

▶ Form of hS
ab near worldline:

hS ∼ m/r

▶ Integrand contains odd # of na’s (≡ ∇ar), and
∫

dΩ na1 · · ·na2k+1 = 0

Final, simple flux-balance law:〈
δΓ̇A

〉
= − 1

32π
(Ω−1)ABFB[h

1]
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Explicit result in coordinates

▶ For Jα, result simplifies as qα, Jα canonical:〈
δJ̇α

〉
=

1

32π
(∂qα)

AFA[h
1]

▶ Compute h1ab asymptotically and differentiate w.r.t. qα:〈
δJ̇α

〉
=

1

32π

[
lim

∆u→∞

1

∆u

∫
∆I

ωa′
{
h1,

∂h1

∂qα

}
dΣa′

+ lim
∆v→∞

1

∆v

∫
∆H

ωa′
{
h1,

∂h1

∂qα

}
dΣa′

]
(qualitatively reproduces results of [Isoyama et al., 2018])
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Conclusions and future work

▶ In this talk: flux-balance laws for the action variables
=⇒ evolution for all conserved quantities in Kerr
▶ Note: calculation doesn’t assume these variables!
▶ Extends results of [Grant & Moxon, 2022]

(for scalar fields)
▶ “Explains” results of [Isoyama et al., 2018]

(Carter constant as coordinate =⇒ [Mino, 2003]?)

▶ Future work:
▶ Practicality: flux in terms of curvature variables

(language of [Isoyama et al., 2018])
▶ Second order! (currently sorting out E & Lz)
▶ Poisson bracket can be degenerate =⇒ add spin?
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